In this article the authors study the so-called ω -deformed $\mathcal{N}=8$ supergravity [1, 2] in four dimensions. Apparently there are a few motivations for this study. First, the origin of ω parameter is not yet clarified fully in 11-dimensional supergravity and corresponding string/M theory. Second, in the context of AdS/CFT duality holographic duals of the ω -deformed supergravity theories are not yet investigated sufficiently.

This article presents roughly two results. One is that, by analyzing fluctuations of the $\mathcal{N}=8$ deformed theory around the AdS vacuum, the authors find that the maximum degree of supersymmetry which is compatible with any boundary conditions (for non-vanishing ω) is $\mathcal{N}=3$. The other and main result is that the authors carry out consistent reduction of the $\mathcal{N}=8$ deformed theory to $\mathcal{N}=6$ deformed supergravity and calculate ω -dependent 3-point correlation functions of the reduced $\mathcal{N}=6$ theory. The 3-point correlators are compared with those of undeformed $\mathcal{N}=6$ theory [3] and it is argued that the correlators in the $\omega=\pi/8$ theory correspond to amplitudes in the so-called ABJM model. The authors also discuss (in the appendix) that the ω -deformed $\mathcal{N}=6$ supergravity can be suitably embedded into the ordinary 11-dimensional or 10-dimensional type IIA supergravity.

References

- [1] G. Dall'Agata, G. Inverso and M. Trigiante, Phys. Rev. Lett. **109**, 201301 (2012) [arXiv:1209.0760 [hep-th]].
- [2] B. de Wit and H. Nicolai, JHEP 1305, 077 (2013) [arXiv:1302.6219 [hep-th]].
- [3] L. Andrianopoli, R. D'Auria, S. Ferrara, P. A. Grassi and M. Trigiante, JHEP **0904**, 074 (2009) [arXiv:0810.1214 [hep-th]].