In this paper the author studies geometric features of the so-called amplituhedron [1] which is defined in terms of the positive Grassmannian $G_+(k, n)$. The amplituhedron $\mathcal{A}_{n,k}^{(m)}$ is defined as an image of the map $G_+(k, n) \rightarrow G_+(k, k+m)$, and can be represented by a $(k+m) \times n$ matrix.

It is known that the m = 1 amplituhedron $\mathcal{A}_{n,k}^{(1)}$ is homeomorphic to a k-dimensional ball [2]. In this paper the author consider the particular case of m = 2 by classifying all boundaries of $\mathcal{A}_{n,k}^{(2)}$ and studying topological and combinatoric properties of $\mathcal{A}_{n,k}^{(2)}$ for any n and k. The author concludes that the results indicate that $\mathcal{A}_{n,k}^{(2)}$ is homeomorphic to a 2k-dimensional closed ball as well.

The amplituhedron is developed and advocated in the computation of scattering amplitudes in gauge theories [3]. In connection to physics, the m = 4 amplituhedron $\mathcal{A}_{n,k}^{(4)}$ is of direct relevance to tree-level scattering amplitudes in planar $\mathcal{N} = 4$ super Yang-Mills theory. The results in this paper would be useful for further understanding of the amplituhedron $\mathcal{A}_{n,k}^{(4)}$ and $\mathcal{N} = 4$ super Yang-Mills theory.

References

- N. Arkani-Hamed and J. Trnka, "The Amplituhedron," JHEP 10, 030 (2014) doi:10.1007/JHEP10(2014)030 [arXiv:1312.2007 [hep-th]].
- [2] P. Galashin, S. N. Karp and T. Lam, Adv. Math. **397**, 108123 (2022) doi:10.1016/j.aim.2021.108123 [arXiv:1707.02010 [math.CO]].
- [3] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov and J. Trnka, Cambridge University Press, 2016, ISBN 978-1-107-08658-6, 978-1-316-57296-2 doi:10.1017/CBO9781316091548
 [arXiv:1212.5605 [hep-th]].